

SAI CHANDRAHAAS VADALI

[LinkedIn](#) | [Portfolio](#) | [Personal Blog](#) | Mobile #: +1 (650)-283-9727 | Email: scvadali@gmail.com

EDUCATION

Stanford University

M.S. in Materials Science and Engineering

GPA: 3.97/4.00

Teaching Assistant EE222: Applied Quantum Mechanics 1

Indian Institute of Technology, Madras

B. Tech, Metallurgical and Materials Engg.

GPA: 8.72/10.00

Minor: Semiconductor Devices

COURSEWORK AND LEARNING OUTCOMES

Device Physics: Power Semiconductor Devices, Special Topics in WBG Materials and Devices, Physics of Materials, Compact Modeling of Devices in ICs, Solar Cells and Device Physics

Nano Fabrication: Advanced IC Technology, IC Fabrication Lab, Electronics and Photonics Materials and Devices Lab, CVD and Epitaxy for ICs, Photonics, and MEMS

Circuit Design: Semiconductor Memory Devices and Circuit Design, Emerging Non-Volatile Memory Devices and Circuit Design, [Digital Systems: From Logic gates to Processors](#), [Analog Circuits](#)

Specialization in Power Electronics: Introduction to Power Electronics, Converter Circuits, Converter Control, Magnetics for Power Electronics

WORK EXPERIENCE

Intel – Device Performance Group

Portland, OR

May '21 – Present

Device Engineer

Silicon Performance

- Leading performance optimization efforts in source/drain epitaxy and gate-spacer loop in the logic FEOL¹ of GAA-FET² architecture
- Built statistical transistor performance models on JMP for interpreting experimental signals resulting from recipe changes
- Achieved significant improvement over quarterly targets in low-voltage drive by addressing bottlenecks in DIBL³ reduction and channel mobility, and extensive decrease in parasitic capacitance by guiding exploratory spacer deposition projects
- Received Departmental Award for leading a task force in resolving a critical epi-growth challenge in PMOS devices, mitigating severe yield and performance degradation
- Driving experimental BEOL¹ projects enhancing via-to-metal shorting margin and improving interconnect RC performance in metal pitches beyond EUV⁸ scaling

Tape-out Experience

- Designed and taped out various transistor and isolation test structures to extract process margins for FEOL and BEOL, evaluating layout impact on performance

GlobalFoundries - Advanced Silicon Packaging

Malta, NY

Jun '20 – Aug '20

Electrical Modeling and Antenna Design Intern

- Optimized geometrical parameters of an aperture-coupled antenna for 5G Antenna-in-Package to maximize gain and bandwidth at 28 GHz on ANSYS HFSS⁴
- Developed RLC model of deep trench decoupling capacitors on GF⁵'s 32 nm node using KLayout and ANSYS Q3D
- Characterized insertion loss induced by 100 μ Through-Silicon-Via in test vehicle for 2.5 D/pseudo-3D packaging on ANSYS HFSS and KLayout

is it fresh GmbH

Aachen, Germany

Antenna Engineering Intern

Jun '18 – Aug '18

Bachelor's Thesis* | Guide: Dr. Jan Schnitker

Jan '19 – May '19

- Enhanced NFC⁶ reading range for ERDF⁷'s PackSense project, monitoring food freshness via printed sensors and NFC coils through experimental work

¹ Front End of Line/Back End of Line

⁴ High Frequency Structure Simulator

⁶ European Regional Development Fund

⁹ Polyethylene Terephthalate

² Gate-All-Around Field Effect Transistor

⁵ GlobalFoundries

⁷ Near-Field Communication

¹⁰ Multi-level cell

³ Drain Induced Barrier Lowering

*Bachelor's thesis was co-advised

⁸ Extreme Ultraviolet

¹¹ Very High/Ultra High Frequency

- Designed and fabricated various printed antenna configurations that led to boost in NFC read-out distance by 200% for NFC ISO14443 standards
- Achieved a sixfold reduction in bulk production costs through innovative designs of high-resistance 50 nm Aluminum on PET⁹ NFC tags

PROJECTS

Semi-empirical modeling of impact ionization in wide bandgap systems Master's Thesis Guide: Prof. Srabanti Chowdhury	Stanford, CA Sep '20 - May '21
• Identified discrepancies in voltage-dependent extraction of impact ionization coefficient α in synthetic diamond diodes in experimental literature employing photomultiplication techniques on various device architectures	
• Proposed a semi-empirical model for α by fitting experimental data to a harmonic sum incorporating applied electric field, electron momentum changes from E-k diagram during collisions, and electron-phonon interactions	
Partial RESET-based WRITE strategies for MLC¹⁰ in Phase-Change Memories EE309A/B: Semiconductor memory devices and circuit design	Stanford, CA Sep '20 – Mar '21
• Developed a novel multi-step WRITE strategy for MLC in GeSeTe-based PCMs to minimize energy-delay product	
• Awarded Best Project Award sponsored by Apple in an advanced graduate class of over 40 students for demonstrating faster, energy-efficient MLC capability with significant potential for memory-intensive AI applications	
• Determined optimal number of steps and step sizes for achieving the desired resistance (bit) by analyzing the thermodynamics (energy) and crystallization kinetics (latency) of phase changes in GeSeTe	
• Simulated this WRITE strategy on a specific array size using NVSim/DESTINY, with experimental results matching energy-delay product to inherently faster but less area-efficient single-bit PCM cells	
Design and fabrication of printed antennas in VHF¹¹ and UHF¹¹ range Bachelor's Thesis* Guide: Prof. Parasuraman Swaminathan	Chennai, India Aug '18 – Jan '19
Flexible printed electronics	
• Designed co-planar waveguide-fed antennas for GPS (1.575 GHz) and Wi-Fi (2.4 GHz) applications, using silver nanowire-based ink on FR-4 and thin PET substrates, achieving high gain with minimal return loss	
• Developed a flexible, transparent capacitive touch pad using silver nanowire-based ink that demonstrated $30 \Omega/\text{sq}$ and a transmittance of 94% at 550 nm	
• Published the results of this work in - Nair, N. M., Daniel, K., Vadali, S. C., Ray, D., & Swaminathan, P. (2019). Direct writing of silver nanowire-based ink for flexible transparent capacitive touch pad. <i>Flexible and Printed Electronics</i> , 4(4), 045001. https://doi.org/10.1088/2058-8585/ab4b04	
Many-in-one wearable virtual musical instruments (Patent) Indian Patent no. 481647 - Center For Innovation, IIT Madras	Chennai, India Aug '16 – Jan '17
• Patented gesture-controlled musical instruments with sensor-loaded gloves, eliminating the need for physical structures	
• Trained classification models to interpret hand and head movements and perform diverse instruments like violin, flute, tabla, guitar, on a single pair of gloves	
• Performed live at the techno-cultural show Envisage, part of IIT Madras' Shaastra ¹² , which had a footfall of 4000+	
Indoor Positioning System using Wi-Fi Electronics Club - Center For Innovation, IIT Madras	Chennai, India Mar '16 – Oct '16
• Engineered an indoor positioning system using the \$5 WiFi-enabled ESP8266-01 IoT ¹³ module, achieving 1-2 m accuracy	
• Achieved a 10x cost reduction, 3x form factor reduction versus existing solutions, prompting interest from TVS Motor Company for warehouse inventory tracking implementation	
• Built a self-localizing robot mapping Wi-Fi nodes in a room using a projections onto convex sets-based trilateration algorithm while representing IIT Madras in the 5 th Inter-IIT Tech Meet ¹⁴	

¹² Annual Technical Festival

¹⁴ Intercollegiate Tech Competitions

¹⁶ Tech for sustainability

¹³ Internet-of-Things

¹⁵ Proportional-integral-derivative

AWARDS

Division Departmental Award

Logic Technology Development, Intel

- Received recognition for exceptional contributions towards achieving strategic objectives within Intel's R&D organization of over 10,000 engineers

Portland, OR

Mar '16 – Oct '16

K. C. Mahindra Scholarship for Graduate Studies Abroad

Scholarship

- Selected from a pool of 1500+ applicants for a \$6,000 scholarship by K. C. Mahindra Education Trust to support pursuing a Master's degree abroad

Mumbai, India

Jul '19

DAAD-University Grants Commission (UGC) Scholarship

Scholarship

Aachen, Germany

May '18

- Awarded scholarship through the DAAD-UGC program, facilitating a fully funded summer internship at Julich Research Center

Asia and India book of record holder

Center For Innovation, IIT Madras

Chennai, India

Oct '17

- Set the record for the ``Most robots (45) simultaneously cleaning a badminton court" while mentoring 270+ undergraduate and graduate students

- Prominent media coverage – [TV coverage](#), [print media](#)

Mudiraj Scholarship

Complete Tuition Support, Johnson Grammar School

Hyderabad, India

2005-2012

- Granted full tuition coverage for exceptional academic performance from primary through high school

LEADERSHIP & MENTORSHIP ROLES

Teaching Assistant

EE222: Applied Quantum Mechanics 1 by Prof. David Miller

Stanford, CA

Fall 2020

- Instructed in office hours, clarified complex concepts and problem sets for a class of 50 graduate students
- Rated as “Extremely Effective” in instruction quality and clarity by over 60% students

Head, Electronics Club

Center For Innovation, IIT Madras

Chennai, India

2017-2018

- Led a team of 6 coordinators and conducted 10+ sessions on diverse topics ranging from soldering, PID¹⁵ controller design, IoT, analog and digital circuits, etc.
- Mentored student projects in impactful areas like unmanned robotics, rural smart lighting, personalized medical monitors, and more
- Planned and executed an event for autonomous crowd-control technologies for the 6th edition of Inter-IIT Tech Meet

Head, Extra-Mural Lectures

IIT Madras

Chennai, India

2017-2018

- Led a team of 20 students and conducted 19 lectures on diverse topics ranging from contemporary global economic issues, social entrepreneurship, wildlife and habitat conservation, indigenous defense technologies, music and vernacular lyric-writing

HOBBIES

- Running – HM PR 1:28:34 @ Portland Marathon 2023
- Biking, bikepacking – [adventures across Switzerland](#), [biking from Bordeaux to Basque country](#)
- Carnatic Singing

COMMUNITY ENGAGEMENT

- Mentored 100+ incoming freshmen via one-on-one sessions to deal with emotional, social, academic stressors
- Technical advisor for the Carbon Zero Challenge¹⁶ winner, "Intelligent Lighting system," addressing power wastage in rural Indian lighting."